

Applicant: Gaomishi Zhonghexiang Labor Products Industry&Trade Date: Jul 26, 2021

Company

Attn : Chi Huanliang

Sample Description:

Five (5) Pairs Of Submitted Sample Said To Be 13 Gauge Polyester/Nylon Shell Coated Latex Gloves In

(A) Orange/Orange (B) Blue/Black (C) Red/Black (D) White/Blue (E) Red/Grey.

Eco Test Components:

(A1) Orange Latex Coated Palm Fabric Of Sample (A) Use

(A2) Orange Polyester/Nylon Back Fabric Of Sample (A) Use

(A3) Orange Cuff Fabric With Elastic Of Sample (A) Use

(B1) Black Latex Coated Palm Fabric Of Sample (B) Use

(B2) Blue Polyester/Nylon Back Fabric Of Sample (B) Use

(B3) Blue Cuff Fabric With Elastic Of Sample (B) Use

(C1) Black Latex Coated Palm Fabric Of Sample (C) Use

(C2) Red Polyester/Nylon Back Fabric Of Sample (C) Use

(C3) Red Cuff Fabric With Elastic Of Sample (C) Use

(D1) Blue Latex Coated Palm Fabric Of Sample (D) Use

(D2) White Polyester/Nylon Back Fabric Of Sample (D) Use

(D3) White Cuff Fabric With Elastic Of Sample (D) Use

(E1) Grey Latex Coated Palm Fabric Of Sample (E) Use

(E2) Red Polyester/Nylon Back Fabric Of Sample (E) Use

(E3) Red Cuff Fabric With Elastic Of Sample (E) Use

Standard : BS EN ISO 21420: 2020

essica

BS EN 388: 2016+A1: 2018

Size Range : Palm Material : Back Material : Cuff Material : Cuff Binding Material : -

Authorized By:

For Intertek Testing Services

(Tianjin) Ltd.

Jessica Lin Manager

Lining Material : Order No. : Style No. : Buyer's Name : -

Manufacturer's Name: Gaomishi Zhonghexiang Labor Products Industry&Trade Company Supplier's Name: Gaomishi Zhonghexiang Labor Products Industry&Trade Company

Date Received/Date Test Started: Jul 20, 2021

essica

Authorized By : For Intertek Testing Services (Tianjin) Ltd.

Jessica Lin Manager

Tests Conducted:

1. pH Value:

Textile: With Reference to ISO 3071:2020, KCl Solution Was Used For Extraction, pH Value Was Measured By pH Meter.

<u>Tested Component</u>	<u>Result</u>	<u>Requirement</u>
(A2)	7.1	*
(A3)	7.3	*
(B2)	7.0	*
(B3)	7.2	*
(C2)	7.3	*
(C3)	7.1	*
(D2)	7.0	*
(D3)	7.3	*
(E2)	6.9	*
(E3)	7.4	*

Temperature Of The Extracting Solution: 25.8°C pH Of The Extracting Solution:5.7

Remark: * = The pH Value Shall Be Greater Than 3.5 And Less Than 9.5. And For Method ISO 4045:2018
The Difference Figure Do Not Need To Test.

Conclusion:

CONCIDENT		
Tested Component	<u>Test Item</u>	<u>Result</u>
(A2)(A3)(B2)(B3)(C2)(C3)	BS EN ISO 21420:2020 For pH Value	Pass
(D2)(D3)(E2)&(E3)	·	

Tests Conducted:

Remark:

2. Design And Construction (BS EN ISO 21420:2020, 4.1):

Sample (A) Requirement Pass/Fail

Comply With Requirement * Pass

comply with Requiremen

The Protective Glove Shall Be Designed And Manufactured So That In The Foreseeable Conditions Of Use, The Wearer Can Perform The Activity As Normally As Possible With An Appropriate Protection. This Document Along With The Appropriate Specific Standards Shall Be Used To Verify This Adequation.

If Required In The Relevant Specific Standard (For Example ISO 16073:2011, 5.7.3), The

Glove Shall Be Designed To Minimize The Donning And Doffing Time.

For Reusable Multilayer Gloves, The Gloves Shall Be Able To Be Doffed Without Separation Of The Layers Of The Fingers. When The Glove Construction Includes Seams, The Material And Strength Of The Seams Shall Be Such That The Overall Performance Of The Glove Is Not Significantly Decreased As Required In The Relevant Specific Standards.

3. Finger Dexterity Test (BS EN ISO 21420:2020, 6.2):

Sample (A)

Specimen 1(Left Hand):

Specimen 2(Right Hand):

Specimen 3(Left Hand):

Specimen 4(Right Hand):

Performance Level:

The Smallest Diameter Of Pin Picked Up

5 mm

5 mm

5 mm

5 mm

5 mm

Remark: * = The Classification Is Determined By The Smallest Diameter Of Pin Picked Up Of The Four

Test Specimens.

Tests Conducted:

4. Abrasion Resistance (BS EN 388: 2016+A1: 2018, 6.1, 9 kPa):

Sample (A)

Adhesion Contact Time Of Test Specimen With The	At Least 5 Min
Double-Sided Adhesive Tape Under A Weight Of A	
Approximatley 10 Kg	
Surface Treatment Of Test Specimen In Order To	No Surface Treatment
Improve Adhesion	
Abradant	The Klingspor PL 31 B-Grit 180 Grain Aluminium
	Oxide
Double-Sided Adhesive Tape	3M [™] Double-Sided Adhesive Tape

Observ	ation Specim	en 1 Specime	n 2 Specimer	n 3 Specimen 4
After 100 (Cycles: 0	0	0	0
After 500 (Cycles: 0	0	0	0
After 2 000	Cycles: X	Х	X	X
After 8 000	Cycles: X	Х	Х	X
Performance Level :			2	

Remark:

The Minimum Requirements For Each Level:

Level 1: 100 Cycles Level 2: 500 Cycles Level 3: 2 000 Cycles Level 4: 8 000 Cycles

Level 5: -

O = No Breakthrough X = Breakthrough

Tests Conducted:

5. Blade Cut Resistance (BS EN 388: 2016+A1: 2018, 6.2):

Sample (A)	Specimen 1 (Index)	Specimen 2 (Index)
	I ₁ :1.8	I ₆ :1.6
	I ₂ :1.6	I ₇ :1.6
	I ₃ :1.4	I ₈ :1.6
	I ₄ :1.5	I ₉ :1.6
	I₅:1.5	I ₁₀ :1.5
	Average Index:1.6	Average Index:1.6

The Lowest Average Index: 1.6
Performance Level: 1 (*)

Remark:

The Minimum Requirements For Each Level:

Level 1: 1.2 Level 2: 2.5 Level 3: 5.0 Level 4: 10.0 Level 5: 20.0

* = The Performance Level Is Defined As The Lowest Average Index Values Of Two Test Specimens From The Different Gloves.

6. Tear Resistance (BS EN 388: 2016+A1: 2018, 6.4):

Sample (A)

Specimen 1: 65 N Specimen 2: 67 N Specimen 3: Over 75N Specimen 4: 71 N Performance Level: 3(*)

Remark:

The Minimum Requirements For Each Level:

Level 1: 10 N Level 2: 25 N Level 3: 50 N Level 4: 75 N Level 5: -

^{*} = The Classification Is Determined By Taking The Lowest Of The Four Values .

Tests Conducted:

7. Puncture Resistance (BS EN 388: 2016+A1: 2018, 6.5):

Sample (A)

Specimen 1: 50 N Specimen 2: 40 N Specimen 3: 45 N Specimen 4: 49 N Performance Level: 1 (*)

Remark:

Level 1: 20 N Level 2: 60 N Level 3: 100 N Level 4: 150 N Level 5: -

Remark: * = The Classification Is Determined By The Lowest Value Of The Four Test Specimens.

Tests Conducted:

8. Detection Of Amines In Dyestuff:

By Gas Chromatographic-Mass Spectrometric (GC-MS) Analysis (HPLC).

Test Method: ISO 14362-1: 2017 For Textile Material

	<u>Forbidden</u>	Cas No.	<u>Result</u>									
							Meth	od T				
			(A2)	(A3)	(B2)	(B3)	(C2)	(C3)	(D2)	(D3)	(E2)	(D3)
1.	4-Aminodiphenyl	92-67-1	N	N	N	N	N	N	N	Ν	N	N
2.	Benzidine	92-87-5	N	N	N	N	N	N	N	Ν	N	N
3.	4-Chloro-o-Toluidine	95-69-2	Ν	N	N	Ν	N	N	N	Ν	N	Ν
4.	2-Naphthylamine	91-59-8	Ν	N	N	Ν	N	N	N	Ν	N	Ν
5.	o-Aminoazotoluene	97-56-3	N	N	N	N	N	N	N	Ν	N	N
6.	2-Amino-4-Nitrotoluene	99-55-8	N	N	N	N	N	N	N	Ν	N	N
7.	p-Chloroaniline	106-47-8	N	N	N	N	N	N	N	Ν	N	N
8.	2,4-Diaminoanisole	615-05-4	Ν	N	N	Ν	N	N	N	Ν	N	Ν
9.	4,4'-	101-77-9	Ν	N	N	Ν	N	N	N	Ν	N	Ν
	Diaminodiphenylmethane											
10.	3,3'-Dichlorobenzidine	91-94-1	N	N	N	N	N	N	N	Ν	N	N
11.	3,3'-Dimethoxybenzidine	119-90-4	Ν	N	N	Ν	N	N	N	Ν	N	Ν
12.	3,3'-Dimethylbenzidine	119-93-7	N	N	N	N	N	N	N	Ν	N	N
13.	3,3'-Dimethyl-	838-88-0	Ν	N	N	Ν	N	N	N	Ν	N	Ν
	4,4'diaminodiphenylmethane											
14.	p-Cresidine	120-71-8	N	N	N	N	N	N	N	Ν	N	N
15.	4,4'-Methylene-Bis(2-	101-14-4	N	N	N	N	N	N	N	Ν	N	N
	Chloroaniline)											
16.	4,4'-Oxydianiline	101-80-4	Ν	N	N	Ν	N	N	N	Ν	N	N
17.	4,4'-Thiodianiline	139-65-1	Ν	N	N	Ν	N	N	N	Ν	N	N
18.	o-Toluidine	95-53-4	Ν	N	N	Ν	N	N	N	Ν	N	N
19.	2,4-Toluylenediamine	95-80-7	N	N	N	N	N	N	N	Ν	N	N
20.	2,4,5-Trimethylaniline	137-17-7	N	N	N	N	N	N	N	Ν	N	N
21.	2-Methoxyaniline	90-04-0	Ν	N	N	Ν	N	N	N	Ν	N	N
22.	4-aminoazobenzene	60-09-3	Ν	N	N	Ν	N	N	N	Ν	N	N
23.	2,4-Dimethylaniline	95-68-1	N	N	N	N	N	N	N	N	N	N
24.	2,6-Dimethylaniline	87-62-7	N	N	N	N	N	N	N	N	N	N

Tests Conducted:

Detection Of Amines In Dyestuff(Cont'd)

	<u>Forbidden</u>	Cas No.					_	<u>sult</u>				
								od D				
			(A2)	(A3)	(B2)	(B3)	(C2)	(C3)	(D2)	(D3)	(E2)	(D3)
1.	4-Aminodiphenyl	92-67-1	N	N	N	N	N	N	N	N	N	N
2.	Benzidine	92-87-5	N	N	N	N	N	N	N	N	N	N
3.	4-Chloro-o-Toluidine	95-69-2	Ν	N	N	N	N	N	N	N	N	N
4.	2-Naphthylamine	91-59-8	Ν	N	N	N	N	N	N	N	N	N
5.	o-Aminoazotoluene	97-56-3	Ν	N	N	N	N	N	N	N	N	N
6.	2-Amino-4-Nitrotoluene	99-55-8	Ν	N	N	N	N	N	N	N	N	N
7.	p-Chloroaniline	106-47-8	N	Ν	N	N	Ν	N	N	Ν	N	Ν
8.	2,4-Diaminoanisole	615-05-4	N	Ν	N	N	Ν	N	N	Ν	N	Ν
9.	4,4'-	101-77-9	N	Ν	N	N	Ν	N	N	Ν	N	Ν
	Diaminodiphenylmethane											
10.	3,3'-Dichlorobenzidine	91-94-1	Ν	Ν	N	N	N	N	N	N	N	N
11.	3,3'-Dimethoxybenzidine	119-90-4	Ν	N	N	N	N	Ν	N	Ν	N	N
12.	3,3'-Dimethylbenzidine	119-93-7	Ν	N	N	N	N	Ν	N	N	N	N
13.	3,3'-Dimethyl-	838-88-0	Ν	N	N	N	N	N	N	N	N	N
	4,4'diaminodiphenylmethane											
14.	p-Cresidine	120-71-8	Ν	N	N	N	N	N	N	N	N	N
15.	4,4'-Methylene-Bis(2-	101-14-4	Ν	N	N	N	N	N	N	N	N	N
	Chloroaniline)											
16.	4,4'-Oxydianiline	101-80-4	N	Ν	N	N	Ν	N	N	N	N	N
17.	4,4'-Thiodianiline	139-65-1	N	Ν	N	N	Ν	N	N	N	N	N
18.	o-Toluidine	95-53-4	N	Ν	N	N	Ν	N	N	N	N	N
19.	2,4-Toluylenediamine	95-80-7	Ν	Ν	N	N	Ν	N	N	N	N	N
20.	2,4,5-Trimethylaniline	137-17-7	N	N	N	N	N	N	N	N	N	N
21.	2-Methoxyaniline	90-04-0	N	N	N	N	N	N	N	N	N	N
22.	4-aminoazobenzene	60-09-3	N	N	N	N	N	N	N	N	N	N
23.	2,4-Dimethylaniline	95-68-1	N	N	N	N	N	N	N	N	N	N
24.	2,6-Dimethylaniline	87-62-7	N	N	N	N	N	N	N	N	N	N

Tests Conducted:

Detection Of Amines In Dyestuff(Cont'd)

Remark : N = Not Detected

Detection Limit = 5 ppm Requirement = Not Detected ppm = parts per million = mg/kg

Method T: Direct Buffer Extraction As Per ISO 14362-1: 2017 Section 10.2

Method D: Colourant Extraction With Xylene As Per ISO 14362-1: 2017 Section 10.1

Conclusion:

<u>Tested Component</u> <u>Test Item</u> <u>Result</u> (A2)(A3)(B2)(B3)(C2)(C3) BS EN ISO 21420:2020 For Azo Dyestuffs Pass

(D2)(D3)(E2)&(E3)

Tests Conducted:

9. Polycyclic Aromatic Hydrocarbons (PAHs) Content:

With Reference To ISO/TS 16190:2013, By Solvent Extraction And Determined By Gas Chromatographic - Mass Spectrometry (GC/MS).

Compound		Requirement (mg/kg)				
<u> </u>	(A1)	(B1)	(C1)	(D1)	(E1)	(Max.)
Benzo(a)pyrene	ND	ND	ND	ND	ND	1
Benzo(e)pyrene	ND	ND	ND	ND	ND	1
Benzo(a)anthracene	ND	ND	ND	ND	ND	1
Chrysene	ND	ND	ND	ND	ND	1
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	1
Benzo(j)fluoranthene	ND	ND	ND	ND	ND	1
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	1
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	1

Remark: ND = Not Detected

Detection limit = 0.2 mg/kg

Conclusion:

<u>Tested Component</u>	<u>Test Item</u>	Result
(A1)(B1)(C1)(D1)&(E1)	BS EN ISO 21420:2020 For Polycyclic Aromatic	Pass
	Hydrocarbons (PAHs) Content	

This report is made solely on the basis of your instructions and/or information and materials supplied by you. It is not intended to be a recommendation for any particular course of action. Intertek does not accept a duty of care or any other responsibility to any person other than the Client in respect of this report and only accepts liability to the Client insofar as is expressly contained in the terms and conditions governing Intertek's provision of services to you. Intertek makes no warranties or representations either express or implied with respect to this report save as provided for in those terms and conditions. We have aimed to conduct the Review on a diligent and careful basis and we do not accept any liability to you for any loss arising out of or in connection with this report, in contract, tort, by statute or otherwise, except in the event of our gross negligence or wilful misconduct.